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Abstract— The problem of assessing the effectiveness of a bonded repair to a cracked plate can be
reduced to a one-dimensional integral equation for the special case when both the plate and the
reinforcement are isotropic and have the same Poisson’s ratio. This special case is used here to
highlight some aspects of bonded repair efficiency under mixed mode loading which are not captured
by crack bridging models. It is shown that bonded repair is less efficient in reducing the stress
intensity factor under mode Il than mode 1, although the stress intensity factor under the shear
mode also asymptotes to a limiting value as has been previously shown for the tensile mode. A
closed form solution is derived for the limiting value of the stress intensity factor under shear mode.
It is shown that for the long crack limit, the appropriate two-dimensional idealisation of the
representative bonded joint corresponds to a plane strain condition, and the existing asymptotic
solution for tensile mode needs to be modified to accommodate the effect of Poisson’s ratio on the
stress intensity factor. It is also noted that crack bridging models lead to non-conservative predictions
of repair efficiency for short cracks. 4 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In the last two decades bonded repair technology has proved a cost-effective means of
repairing cracks in atrcraft structures (Ratwani, 1979 ; Rose, 1981 ; Baker and Jones, 1988 ;
Baker, 1993 ; Baker, 1995; Rose et al., 1995). The simple fact that the stress intensity factor
of a crack after repair asymptotes to a limiting value as the crack length increases plays a
key role in successful applications of this technique. However, analyses so far have been
limited to the tensile mode only and it is not clear whether bonded repair is equally effective
in reducing the stress intensity factor of a crack subjected to shear loading, or mixed mode
loading in general.

Although cracks that are likely to be encountered in practice are generally aligned in
a direction perpendicular to the principal tensile stress (or strain), giving rise to mode [
cracking, there are at least two circumstances where mixed mode cracking is a major
concern in the context of bonded repair. Firstly, application of bonded reinforcements,
which are frequently anisotropic, may alter the local stress state near the crack region so
that the maximum principal stress may no longer remain perpendicular to the crack plane.
Secondly, structures are frequently subjected to non-proportional loading in which the
principal stress/strain axes rotate with time (see e.g. Wang and Brown, 1993, 1996), thus
cracks may experience a time-dependent mixed mode loading. If the bonded repair tech-
nique is used to repair mode Il cracks, one important question remaining to be resolved is
whether this method is still effective. In particular, one recent finite element study by Chue
et al. (1994) showed that the repair efficiency for mode Il cracks was much lower than for
mode L.

A typical bonded repair consists of two sheets which are bonded together by a thin
layer of adhesive; see, e.g. Fig. 1. Since a bonded repair represents a multiple layered
structure with a crack being present in only one layer, an exact, analytical solution of this
three-dimensional problem is an almost intractable task. Hence it is imperative to make
simplifications of some sort to enable the problem to be analysed. Three approaches have
been proposed so far to simplify the problem of bonded repairs to either a one-dimensional
or two-dimensional problem. By idealising the adhesive layer as shear springs and treating
the stresses in the adhesive layer as body forces acting on the mid-plane of the plate and
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Fig. 1. A centre cracked plate repaired by a bonded patch and subjected to mixed mode loading.
(a) Plan view and (b) near crack region for the perturbation shear loading case.

the reinforcement, Erdogan and Arin (1972) modelled a bonded repair as a two-dimensional
structure subjected to in-plane loading, making use of the solution of a centre-cracked sheet
subjected to a point force at arbitrary position. One set of coupled 2-D integral equations
was obtained for the two shear stresses in the adhesive layer. Based on similar assumptions,
Keer et al. (1976) proposed an elegant approach for the special case of an isotropic plate
and reinforcement having identical Poisson’s ratio. Under this condition, the problem was
successfully reduced to a single 1-D integral equation, with the integral ranging over the
crack length. Compared with the method by Erdogan and Arin (1972), Keer’s formulation
is considerably more efficient for parametric studies of the various factors affecting repair
efficiency.
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An alternative, simpler method for modelling crack patching would be to model the
bonded repair as cracks bridged by springs, resulting in essentially a one-dimensional
equilibrium problem (Rose, 1987 Budiansky et al., 1988). The crack bridging model
involves two separate steps. Firstly an appropriate spring constant is determined, for
example from an overlap bonded joint (Rose, 1982) representing the central strip of a
bonded repair. Then the bonded repair was modelled as a crack internally reinforced by
springs. Although this crack bridging model is now well established for dealing with bonded
repairs and fibre bridging in composite materials (Nemat-Nasser and Hori, 1987), this one-
dimensional idealisation 1s inadequate in the short crack limit, mainly because it does not
account for the in-plane shear transfer between neighbouring strips parallel to the load
axis. Thus, the asymptotic expansion of the stress intensity factor determined from the
spring model in the short crack limit (Rose, 1987) differed from that obtained (Rose, 1981)
from the appropriate two-dimensional formulation by Keer et al. (1976).

The aim of this paper is to present a fracture analysis of repaired cracks under in-plane
mixed-mode loading, focusing first on the special case of isotropic adherends having the
same Poisson’s ratio, extending the formulation of Keer er al. (1976) to include mode 11.
The problem is reduced to a single integral equation over a finite interval, which permits a
parametric study to be performed for the various factors that may influence the repair
efficiency. A closed-form solution is also derived for the asymptotic value of the stress
intensity factor for long cracks. This asymptotic bound is then extended to include aniso-
tropic reinforcements. Finally comparison with the crack bridging model is made, and it is
shown that in the short crack limit the crack bridging model may over-predict the repair
efficiency, and hence tends to be non-conservative.

2. FUNDAMENTAL EQUATIONS

Figure 1 shows the repair configuration being considered. Following Keer ez al. (1976),
we will assume that both the cracked plate and the reinforcement are homogeneous.
isotropic media. In addition, the adhesive shear stresses are treated as body forces acting
on the mid-planes of the bonded plate and reinforcement. It should be noted for one-sided
repairs, out-of-plane bending would occur due to the load-path eccentricity (Ratwani,
1978; Wang et al., 1997) so that the coupling between the adherends would involve
distributed moments in addition to the in-plane body forces. In the present study, this out-
of-plane deformation is ignored for simplicity, as in the previous work of Keer ez al. (1976),
so that the analysis applied strictly to the case of symmetrical reinforcement, i.e. two
identical patches are bonded to two sides of the plate, or only one side provided the plate
1s fully supported against out-of-plane deflection.

For a homogeneous plate, the equations of equilibrium for plane stress conditions are
given by the well known Navier's equations in the static case,

l '
Vit I—:V(V-u)—fzo M

where  represents the displacement vector, f1s the body force, and v is the Poisson’s ratio.
In the absence of body force, the above equation can be conveniently solved using integral
transform methods (Sneddon, 1951 ; Sneddon and Lowengrub, 1969), with the aid of Airy
stress function. In the case of a cracked plate reinforced by a patch, the shear stresses in
the adhesive layer can be considered as body forces acting on the mid-planes of the cracked
plate and the reinforcement (Keer ef a/., 1976). Therefore the equations of equilibrium for
the crack plate and the reinforcement as depicted in Fig. 1 may be expressed in terms of
displacement vectors,

Vig® 4 Tt VY- u®)— —u'®) =0, 2
1 - Vp He
1 )

V2 4 YR V(V-u®)— )—R(u““ —u™) = 0. (3)
I —vy HUr
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Here and in the following subscripts (or superscripts) P, R, and A are used to distinguish
properties pertaining respectively to the plate, the reinforcement, and the adhesive layer.
Parameters yp describe the shear effect of the adhesive,

yp=—- and yr = s “4)

where p, is the shear modulus of the adhesive and ¢4, #p, #x are the thicknesses of the
adhesive, the cracked plate and the reinforcement. In general, eqns (2) and (3) are coupled
and the solution would normally lead to 2-D integral equations (e.g., Erdogan and Arin,
1972) over the whole extent of the bonded region. In the special case where the cracked
plate and the bonded patch have identical Poisson’s ratio, Keer er al. (1976) showed
that, upon subtracting eqn (3) from (2), homogeneous equations can be obtained for the
displacement difference vector u*®

2 azu(m 62u(AJ l—v azusm ,
Ry X » _AA- (A) _ 0, Sa
[=v ax® | oy d4vaxay O (5a)
24,8) 2 ,(8) oy A2

. ) (5b)

oxr 1=v g2 14+voxdy :

where
' = 4® _u(R)’ (6)
2 : 1 l

k:zzg_REﬁA_( LI o

Hp MR Ia \Mplp  Urlg

Since eqns (5) are linear partial differential equations with constant coefficients, the
unknown displacement difference #'®’ can be solved using the Fourier transform technique.

The boundary conditions for the problem shown in Fig. 1(a) are that the surfaces of
the crack are stress free and there is a prescribed stress system at infinity so that

6,=7t,=0 (x| <a,y=0) (8a)
and

s e

oL 4 2
00— 0%, 0,05, T,—1, 45 Jx +p° - . (8b)

By using the superposition principle it is easy to demonstrate that it is equivalent to solving
the following mixed boundary value problem,

G,, = —0y, T,=—1 (x]<ay=0) (9a)
and
O-YX - O’ o‘v\'l‘ - O’ T\'\‘ - O as \/xz +.},2 nd w' (9b)

In the special case of a single cracked plate, it is obvious that ¢, = 6%, 7, = 1. For a plate
reinforced with a patch, however, the above relationships no longer hold, due to the
presence of the reinforcement. Instead the stresses at the prospective location of the crack
in a repaired structure would be lower than the remote applied stresses. In general an exact
solution for ¢, and 1, is difficult to obtain except for certain simple reinforcement shapes
and loads (Rose, 1981). Approximate solutions, however, can be readily derived assuming
the stresses in the reinforcement and the base plate are uniform everywhere within the
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reinforced portion, and there is no relative displacement between the plate and the reinforce-
ment. Details are presented in Appendix A for the case of an isotropic plate and reinforce-
ment. In the special case that the plate and the reinforcement have identical Poisson’s ratio,
the prospective tensile and shear stresses are

TGy 1+S6y_)‘7 (10)
1 o
Tl) :mT,YJ‘V (1])

where S = Egtg/Eptp denotes the stiffness ratio between the reinforcement and the base
plate. The factor 1/(1+.5) represents the reduction in the plate stress due to the reinforce-
ment.

The boundary value problem represented by eqn (9) can be further decomposed into
a tensile mode and a shear mode, according to the superposition principle, i.¢.,

o

Fy

=—0,, T, =0 (x| <ay=0) model (12)
and

6,=0, 1, =—1 (x| <a,y=0) modell (13)

In the present paper we will assume that the far field stresses are even functions of x, i.e.,
6o(x) = 0o(—x) and 14(x) = 19(—x). For mode I loading the displacement u, is symmetric
in x while displacement u, is anti-symmetric, hence they can be expressed respectively in
terms of the Fourier cosine and sine transforms. Details of the solution can be found in
Keer et al. (1976). The roles of sine and cosine representation should be reversed for mode
IT as the displacement u, is anti-symmetric while displacement u, is symmetric.

3. SOLUTIONS FOR SHEAR MODE

Assuming the reinforced region is infinitely large, the shear mode problem in Fig. 1(a)
can be readily reduced to the solution of the perturbation problem shown in Fig. 1(b).
where the crack faces are subjected to shear tractions given by eqn (13). Keeping in mind
that the shear stress on y = 0 is an even function of x, the components of «*’, which satisfy
eqn {5), can be represented as follows,

U = f (A@)e v + B e ") cos(Ex) de, (14)

}

u® = Jx C(&, y)sin(éx) d¢, (15)

where A(&), B(&). and C(¢.y) are functions yet to be determined. Inserting the above
expressions into eqn (5), the following equations can be deduced

- é o -y A"*Z R
CG.y) = — - A)e V"—EB(é)e (16)
“1
=0, a7
P e
A5 =&+ A (18)
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The actual displacements for the cracked plate repaired by a reinforcement can now be
expressed as

u” = au® +u, (19)

uP = o™ +u, (20)

where u, and u, are yet to be determined. Inserting these two equations into (2), it is easy
to show that by choosing

p

= , 21
T (21)
one obtains the following homogeneous equation,
, 1+v
Viu+ mV(V-u) =0, (22)

which is exactly the equilibrium equation corresponding to zero body force, for which the
general solutions under shear loading are (Sneddon and Lowengrub, 1969)

e %/‘PJOXJ <% ”‘fy>'ﬁ(‘5)eé” cos({x) d¢, (23)
L=y ) P d 2
u, = Z‘;L (Im +f}>'ﬁ(f)e ~ sin({x) d¢, (24)

where (&) is a function yet to be determined. Now the displacements and stresses in the
cracked plate can be expressed as

W = # J (A@ e 1 BE) e ) cos(éx) de

1 =/ 2
+2;¢J <1+v—f}’>ef—"t//(ﬁ)cos(éx)dé, (25)

0

u = f : [ S 4@ %B(f) e} sin(&x) dé

upA® Jo Ay

1 *[]— .
f [ ”+fy]e'€-'w(é)sin(éx>dé, (26)

2[11) 0 1+v
o [F 2up . A3 . .
ot = j e {(-fkuc)A(:)e'-m+<-5v+‘—>3(£)e/-»]sm(éx)dé
,u'PAZ 0 1—v ¢

- ro yEY(©e “sin(éx)de,  (27)
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Ty = ﬁr Hp [(*il - E—I)A(E) e™ " =24, B(¢) e"’)"z"’:|COS(SX) d¢

- J T E1— (O e cosEx) dE. (28)

Similarly the displacements and stresses in the bonded patch can also be derived, and in
particular,

= (LVT a 1>F(A(é)e”"-"+B(é)e"”’) cos(éx) dé

) _
+EL (m‘@eQ'V*”@)C"S(fx)dé 29)

The mixed boundary conditions for the perturbation problem depicted in Fig. 1(b) are

(i) bonded patch

=0 (—xm<x<aow,y=0), (30a)
(i) cracked plate
o =0 (0<|x] <ay=0), (30b)
™ = —1(x) O<|x|<a,y=0), (30¢)
U =0 (x| =a,y=0). (30d)

From these boundary conditions we can determine the remaining three unknown functions
A(E), B(&), and Y(&). In particular, eqn (30b) leads to

282
2&:2 +;L2

B({) = - A2), (3D

while eqn (30a) results, on making use of eqn (31),

Y A(&)A?
W(E) = —up(1+V)( ”jz—l) f)”. (32)
Up A 282447
The x-displacement and the shear stress in the cracked plate along y = 0 are given by
1W=JU@wMMM, (33)
0

Ty = *%(HV) fo [Fu($)—E1U(S) COS(é‘X)di—r pp(I+0)EU(Q) cos(Ex)dS,  (34)

0

where
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5

v = A(©), (35)

262_}_22

QQE 4+ A7) — 44, 4,8
(I1+v)4,¢ '

Fu(@) = (36)

Here the subscript “II’" is used to signify quantities pertaining to mode II. It is easy to see
that Fy; differs from its counterpart for mode I (Keer et al., 1976), which is given in Appendix
B expressed in accordance with the present notation. The implications of this difference
will be discussed later.

Boundary condition (30d) can be automatically satisfied if we represent function U(&)
by the following integral (Sneddon and Lowengrub, 1969)

() = J (), (e dr, 37)

0

where Jy(x) is the Bessel function of zero order. So the shear stress in the cracked plate
along y = 01is

) oL d o
wy = -%(HV)J (Fii(&) —HU({) cos(Ex) dS — (T)EJ pp(1+v)U(E) sin(Ex) dg
A 0

0

H(x—1)

P U d 2]
= (14 f (Fu(®) = U(&) cos(&x) dé - J (1 4+9)®() —===d1,  (38)
A 0 X Jo \/X‘—IQ
where the identity (Erdelyi, 1954)
J " hcnsin(en) dg = FEZD (39)
0 \/)Cz—t2

has been used. Here H is the Heaviside function. Therefore the boundary condition (30¢)
can be expressed as

d [ up(1+v)O(1)
o= - [ eLzm

Tp * . .
ax), Soor df—;(1+V)J (F () = U(C) cos(Ex)de,  (40)

0

which is an Abel integral equation, which can be solved to yield the following Fredholm
integral equation of the second kind:

"ot (1)

nr o 2
1p(1 +0)O(r) + %r(l +V)J Lu(t,n®()de = ;rﬁ N ds, (41)

0
where

Ly(1,r) = F(Fu(i) =& (E0)Jp(Er) dE. (42)

0

In the case of constant shear stress 7,(x) = 1,, we obtain the following integral equation,

a

O(r)+ —]fgrﬁ Ly, n®(n)yde =

Tor
+v)p’

(43)

For comparison, the integral equation for mode I loading is also given in Appendix B,
where the present notation has been used. The similarity between mode 1 and mode II is
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apparent, but the above mentioned difference between the two functions F}, and F; has a
significant implication for the repair efficiency under mode I1 relative to mode I, as discussed
in Section 4.

The stress intensity factor at the crack tip can be determined either using displacement
or stress based definitions, i.e., eqn (33) or (38) ; both methods yield the same result. Here
we will take the former approach,

uP
Ja—x
Noting eqns (33) and (37) and after integration by parts to isolate the singularity term, we
have

w
Ky = hm (1+v)p 3 (44)

K = (1 +9p /72 (45)
Va

It is easy to verify that the unrepaired situation can be recovered as a special case, by setting
A =0, so that

Ly(t,r) =0 (46)
in eqn (43), and thus
Tod
O(a) = 47
(@) (I +v)pp “7

Ky = 1o/ 1. (48)

It should be emphasised that the stress intensity factor given by eqn (45) represents the
second stage analysis of a bonded repair (Rose, 1981, 1985) ; the contribution of stage one
to the reduction in stress intensity factor is reflected by the lower tractions applied to the
crack faces as compared prior to patching, see eqn (11).

4. NUMERICAL RESULTS

The integral eqn (43) can be readily solved as it is non-singular, and the kernel, eqn
(42), converges rapidly for arbitrary ¢ and r. In the present work the integral equation was
solved using the Gauss—-Legendre method, and the value of @ at x = a was evaluated using
the Nystrom’s interpolation method (Press et al., 1992). A convergence study showed that
an accuracy of 0.1% in the stress intensity factor can be achieved for ¥ = 50, with crack
lengths up to ka < 20 (k is a characteristic spring constant to be discussed later). The order
of the Gauss—Legendre integration method needs to be increased should the stress intensity
factors for even longer crack lengths be required. As will be seen later, this is generally
unnecessary as the stress intensity factor for a crack length corresponding to the above
chosen limit approaches 99.95% of the limiting value for semi-infinite crack length.

As an example, the problem was solved for the following materials and dimensions,
typifying a bonded patch used in repairing aircraft structures (see e.g. Baker and Jones.
1988) :

Cracked plate: E, =72 GPa, 1, = 3.0 mm
Patch: Er =208 GPa, r = 1.0 mm

Adhesive : un =0.7GPa, 1, = 0.2 mm

and the Poisson’s ratio is taken to be 0.3 for both the cracked plate and the patch. Here we
assume that the patch can be considered as an isotropic material ; the effect of anisotropy
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Fig. 2. Reduction in mode I and mode 11 stress intensity factors due to bonded repair, for typical
values of plate and patch parameters.

will be discussed later. The stress intensity factors K; obtained from eqn (43) for various
crack lengths are plotted in Fig. 2. The numerical results are given as the ratio of the stress
intensity factor after and before repair. It is clear that there is a significant reduction in the
stress intensity factor after reinforcement, the reduction increasing with increasing crack
length. For comparison, the stress intensity factor for mode I loading is also shown in the
figure, indicating a higher reduction ratio under mode I than mode I1.

The numerical results revealed a very interesting and unexpected difference between
the asymptotic behaviours of mode 1 and mode II stress intensity factors. In the case of a
single sheet containing a crack, the intensity factors under tensile and shear modes have
the same functional form, i.e.

K Ky -
— == /na. 49
c T v “49)
However, for a repaired crack, the normalised stress intensity factor exhibits a different
behaviour as the crack length increases, as shown in Fig. 3,

K@ _ Kula) 0

Tq To
The dashed lines in the figure represent asymptotic values for mode 1 and mode 11, respec-
tively ; the derivations are given in the next section. In the long crack limit, the asymptotic
value for mode Il is significantly higher than mode 1; the difference (which depends on the
Poisson’s ratio, as will be shown later) in the present example is approximately 35%. This
difference would certainly impact on the design of bonded patches for mixed mode loading
situations, and is indicative of a different reinforcement mechanism for shear loading as
compared with the tensile mode. Further discussion concerning the limiting case when the
crack length approaches infinity will be presented in the next section,. as it permits an
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Fig. 3. Asymptotic behaviour of mode I and mode 1 stress intensity factors versus crack length.
Symbols : solution of integral eqns (43) and (B3). Dashed lines : asymptotic values.

independent, one-dimensional analysis to be carried out for the energy release rate, and
hence for the stress intensity factors.

5. ASYMPTOTIC SOLUTION FOR LONG CRACK LIMIT

Although the integral eqn (43) can be solved using an asymptotic expansion method
for the small crack limit (i.e., a — 0) (Rose, 1982), there appears to be no effective method
for handling the long crack limit (@ — c0). An alternative method is to determine the energy
release rate for a semi-finite crack subjected to in-plane shear using an energy approach. A
two-dimensional idealisation of a representative bonded joint subjected to shear loading is
schematically shown in Fig. 4. By definition, the energy release rate is given by
G = — 011/21p 8a, where I is the potential energy of the system. In the case of linear elastic
systems, the strain energy release rate, G, ., for a semi-infinite crack can be determined by
considering the energy required to re-close a strip, thus,

Gy bty = Tou(y = O0)tp, (31

where the sliding displacement u(y = 0) is the x-displacement of the loaded adherend
shown in Fig. 4. In the following we will first consider the case of plate and reinforcement
being isotropic in keeping with the preceding analysis ; an extended solution is presented in
the next section to incorporate the effect of anisotropy in either the plate or the reinforce-
ment.

For a semi-infinite crack along x < 0, y = 0, all the strain components pertaining to
the plate and the reinforcement should be position independent in the x-direction for both
limits x — cc and x - — o0, l.€.,
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(@

adhesive layer

(® (©)

Fig. 4. (a) A repaired crack subjected to shear loading, (b) representative bonded joint under in-
plane shear, and (c) stresses in the adhesive layer.

-~ el
Au? tu” U uld

Ox? Ox y ox? Ox Oy 0, (52)
hence eqns (2) and (5a) reduce to
2 (P
0 ll% _ zgu,(rm — 0, (53)
ay* Hp
62 (YA) s
i ) (54)
oy

which lead to the following solutions that remain bounded in the domain y < 0,

U = gev, (55)
P) yP A Ay
U’ = ——e*+By+C, (56)
Hp )2

where constants 4, B and C are unknown constants yet to be determined. Since the
displacement # should vanish as y — — oo, constants B and C should be zero. Other
boundary conditions for the reinforcement and the plate are
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u® =0 at y=0, (57)
™ =17 at y=0. (58)

So the following solutions can be obtained, noting that =7 = g, du" /3y

A )
'l = —gye”. (59
r

Consequently the crack sliding displacement is

A

A A
u(\-P)(,V =0)=—1y = —IslpTo. (60)
¥p Ha

With this, the strain energy release rate can be derived

1 1
G = —TotptT (3 = 0) = (1) Atp . (61)
Ip Ha

Using Irwin’s relation, the mode 1I stress intensity factor is thus

e ! 20 +w)(1+8)]'2
Ky, = \//EPGIl,x =1 \/Ep 2ty = Tl ‘3£~ 2 > (62)
Ha VAS
where
_ MrlR _ ERZR' (63)
Uplp  Eplp

For the purpose of comparison with mode I (Rose, 1982), eqn (62) can be rewritten as

Ky = To//\/kn» (64)
where ky, represents a spring constant for shear mode,

S

ki 2014+ (1 +8) (63)
It is evident that the shear spring constant given by eqn (65) is dependent on the shear
moduli and Poisson’s ratio of the cracked plate and the reinforcement. As will be discussed
later, for an isotropic material this shear spring constant is smaller than the spring constant
corresponding to mode I, as the shear stiffness is apparently lower than tensile stiffness.
Consequently the limiting value of mode Il stress intensity factor of a repaired crack is
greater than under tensile mode. One important implication arising from this difference is
that when strongly anisotropic reinforcements with low in-plane shear moduli, such as
unidirectional plastic reinforced composites, are used to repair a crack under shear loading,
the repair efficiency will be much lower than could be expected on the basis of mode I
analysis.

6. ORTHOTROPIC REINFORCEMENT

Frequently fibre reinforced composite patches (Baker and Jones, 1988) are used in
bonded repairs due to their highly desirable structural properties. In particular, boron—
epoxy is currently the most widely used reinforcement in repairing aircraft structures due
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to the non-conductivity of the boron-epoxy composite, thus permitting the use of the eddy-
current method to measure crack length. When the crack to be repaired is under mode I
loading, the use of unidirectional boron—epoxy composites with the fibre direction being
perpendicular to the crack is shown to provide the maximum reinforcement in reducing the
stress intensity factor. However, in the case of shear loading, the same method may become
less effective due to the low in-plane shear modulus of the composite material. Detailed
analysis will be presented below.

For the representative joint shown in Fig. 4, since the displacements in the plate and
the reinforcement are position independent in the x direction, the two in-plane shear strains
in the plate and the patch may be expressed as,

(P) (P)
WPy = du,\. — _TL. 66
’).\'_1‘ d . L ( )
Yy luP‘\‘y
o du®
T = = b (67)
dy  Mry

where the in-plane shear moduli of the plate and the reinforcement are designated as yp ,,
and pg . respectively. The equations of equilibrium of the plate and the reinforcement in
the x direction lead to, treating the adhesive stresses as body forces acting on the mid-
planes of the reinforcement and the plate,

A+ (P) (A)

OT‘(\‘ - Tx:

DN = 68

= he= (68)
oot g

— =fr= -, 69
2y fer ' (69)

where f,p and f, p represent the body forces for the plate and the reinforcement, which in
the present case are equal to the shear stresses in the adhesive layer, divided by the plate
and reinforcement thicknesses. Since the shear strain in the adhesive layer is

(P) (R}
U, —u,
W=t (70)

A

differentiating eqn (70) we have, noting eqns (66) and (67)

dy dy (71)

dy? Ia |

dy* A )

Using eqns (68) and (69) the governing equation for the adhesive shear stress becomes

d2t 5
....... A y T(,f}), 72
dy? - (72)
where
1 ]
ﬁ:ﬁ[ + } 73)
tA .uP,xytP .uR,x_rtR

-

The solution for eqn (72) which remains bounded in the half plane y < 0 is
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T(\IZ\) = Tmax e,{y’ (74)

where 1,,,,, can be determined from the following boundary condition, making use of eqns

(66-70)
dr® dy® Ua (A du®
= = = =0 e e 2 = TotpA’. 75
dy o Ha dy o I ( dy dy >y=0 olp (75)
Therefore from eqn (74)
Tnax = ;~tPT()- (76)
The sliding displacement is thus, noting eqn (70)
P . To .
u.(\ )(}/’ = O) = Vmaxia = —— Alplp, (77)
Ha

which is the same as eqn (60) for the isotropic case, except that the characteristic parameter
A now takes a more general definition in terms of the in-plane shear moduli of the plate
and the reinforcement, see eqn (73). Therefore the result obtained previously for isotropic
plate and reinforcement, i.e. eqn (62), is still applicable to anisotropic reinforcements,
providing the appropriate in-plane shear moduli for the plate and the reinforcement are
used to compute the shear transfer parameter 4.

Now let us consider an example of using unidirectional boron-epoxy composite as
reinforcement to repair a mode Il crack. The shear modulus of a typical boron—epoxy patch
(Baker and Jones, 1988) is around 7.0 GPa, while the Young’s modulus in the fibre direction
is approximately 208 GPa, with the Poisson’s ratio being about 0.18. The dimensions and
material properties for the cracked plate were the same as the example considered in Section
4. The asymptotic value of the mode II stress intensity factor determined from eqn (64)
(using the shear transfer parameter given by eqn (73)) is shown by the dashed curve in Fig.
5, together with the stress intensity under mode I loading. It is clear that the asymptotic

0.25
0.20
0.15

0.10

Stress intensity factor I(IlcsO or K /10

Crack length a (mm)

Fig. 5. Repair performance of orthotropic patches under mode Il and mode 1.
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value of the mode II stress intensity factor is much higher than mode 1. By approximating
the reinforcement as an isotropic material, the mode 1 and mode II stress intensity factors
can be evaluated using the integral equation approach for arbitrary crack length ; the results
are also shown in Fig. 5 by symbols. The crack length at which the mode II stress intensity
factor approaches the asymptotic value is much longer than the characteristic crack length
of mode I. In the context of composite patch repair, this means that in the short crack limit
reinforcement is far less effective for the shear mode than tensile mode. These results help
to explain the finite element results of a patched crack under biaxial loading obtained by
Chue et al. (1994), who reported that the repair efficiency for mode 11 was much lower than
under mode I.

7. SPRING CONSTANT FOR MODE I

From the foregoing analysis using integral transform formulation, three essential
parameters have been identified that would influence the stress intensity factor (both mode
I and mode 1I) of a patched crack. These are, the shear transfer length (8! for mode 1 and
A" for mode 11), stiffness ratio (.S), and Poisson’s ratio (v). In the crack bridging model
(Rose, 1987) the only characteristic parameter is the spring constant, k, although this spring
constant is a compound of all the three parameters, see eqn (65) for mode II. However, the
mode I spring constant used earlier by Rose (1982) was based on the standard engineering
approximation, which treats the representative bonded joint as being under plane stress
conditions. Careful re-examination of this approach appears to suggest that plane strain
assumption would be more appropriate for the problem, as the displacements should be
position independent along the x direction (McCartney (1992) has suggested a concept of
generalised plane strain condition for the analogous problem of matrix cracking in 0°/90°
laminates). To illustrate this point, let us first consider the field equations governing the
deformation of a strip representing the centre region of an infinite crack as depicted in Fig.
4, except that the joint is now subjected to a normal stress along y = 0. All the strain
components pertaining to the plate and the reinforcement should be position independent
in the x-direction, i.e., the strip should be considered as under generalised plane strain.
Consequently eqn (5b) reduces to

2 oM
L Ly} (78)
I1=v g2 :
which has the following solution in the y < (0 domain
W (y) = Aet, (79)

where A4 is an unknown constant yet to be determined, and

. & ]_vl J_v2 1/2
B [rA (EpzP + Extr ’ (80)

for isotropic adherends. When compared with the load transfer parameter used by Rose
(1982, 1988), the present result shows that the Young’s moduli of the plate and the
reinforcement should be replaced by the plane-strain moduli. When this new expression is
used, the stress intensity factor can be expressed as

K., =JEG, ==, (81)

where 4 is given by
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B*s S 2
k= —" " = : - k. %
A+ S 49dTw(i+s) VI1-v (82)

which is greater than that obtained by Rose (1981, 1988) by a factor ./1—v?. It is also
clear that the mode I spring constant is greater than its mode II counterpart by a factor of
< 2/(1—v), implying that an isotropic patch would have a higher repair efficiency under
mode | than under shear mode. In terms of the stress intensity factor, the minimum ratio
between mode Il and mode 1 stress intensity factors is “\/% a 1.19 for v =0, and the
maximum ratio is \/E ~ 1.414 for v = 0.5.

To demonstrate the validity of the present results, numerical results of the integral
equations for mode I1 (see eqn (43)) and mode I (see Appendix B) are presented as curves
in Fig. 6 showing the influence of Poisson’s ratio on the asymptotic stress intensity factors
in the long crack limit ¢ — o, In the numerical study the stress intensity factors were
computed at a crack length corresponding to ka = 20. The stress intensity factor at this
crack length is estimated to approach 99.95% of the asymptotic value. Only the Poisson’s
ratio was varied while the Young’s moduli and geometrical dimensions were kept the same
as those given in Section 3. Two different trends can be observed in Fig. 6. First, the mode
I1 stress intensity factor increases as the Poisson’s ratio increases, and such an increase is
well predicted by the upper bound solutions (eqn (62)). The reason for the observed increase
is primarily due to the decrease in the shear modulus as the Poisson’s ratio increases while
the Young's moduli are kept constant. Secondly, the mode I stress intensity factor actually
decreases with an increase in the Poisson’s ratio. The reduction in the mode [ stress intensity
factor is, however, not expected from the earlier asymptotic solution by Rose (1982, 1987).
It is therefore evident that the plane stress assumption for the representative bonded joint
was inadequate. It is also clear from Fig. 6(b) that the decrease in the mode I stress intensity
factor as the Poisson’s ratio increases is well predicted by the present spring constant, given
by eqn (82).

An alternative method for determining the spring constant without resorting to the
solution of representative bonded joints is as follows. For mode I, the spring constant is
defined by (Rose, 1987)

k= E:u_‘ (83)
which may be expressed as
k= fi-{r; l?u((éf)) ®
where
3) = f " 6, () cos(éx) dx
0
and

i(e) = j 4, (¥) cos(Ex) dx

are the Fourier cosine transforms of the stress and displacement. This can be interpreted
as applying a periodic pressure of infinite wavelength (or zero wave-number) to the edge
» =0 of a reinforced half-plate (Rose, 1982). Then the spring constant is defined by the
ratio between the stress and displacement. From eqns (26) and (27) in Keer et al. (1976)
we have
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Fig. 6. Influence of Poisson’s ratio on the asymptotic stress intensity factors, (a) asymptotic behav-
iour and (b) limiting value in the long crack limit. Symbols: exact solution of integral equations;
solid curves : closed form solutions.



Bonded repair of cracks under mixed mode loading 2767

s o

S v =~ s - g (85)
for mode I, and from eqns (33) and (34)

= i D [R(0)— 2l (86)

r(1+v)up— —cu+ gt &) — ¢l

for mode II. Combining eqns (85) and (86) with eqn (84) the following spring constants
can be readily derived

iS
S200 40/ T—v(1+5) (
and
S
STy o

which are respectively identical to eqns (82) and (65), confirming the validity of the spring
constants derived earlier from representative overlap joints under plane strain condition.

8. COMPARISON WITH CRACK BRIDGING MODELS

It is interesting to note that both the mode 1 and mode II spring constants, &, and &,
contain all the three variables identified in Section 7, and it is not unreasonable to expect
that the behaviour in the long crack limit (Rose, 1987) is characterised by these spring
constants. The short crack limit, however, may behave differently from what would be
predicted by the crack bridging model, which has only one scaling parameter, the spring
constant.

In the short crack limit, ¢ — 0, the integral eqn (43) is amenable to successive solution
(Rose, 1982), which leads to

Kin(@) = 0y/na [1 + A;“ 1 f <@ 1na+0(a2)} (89)
where
1
Au = lim EF(E) 8] = g S8+ (140714 (90)

It is noted that in the short crack limit, the repair efficiency under mode I is identical to
that under mode II. It is also clear that the spring constant (k; or k) are not the only
scaling parameter that characterises the transient behaviour for short crack lengths. In fact,
the three parameters cannot be lumped into a single spring constant, as the stiffness ratio
S and the Poisson’s ratio v also affect the repair efficiency. This is demonstrated in Fig. 7.
where the symbols represent the exact solution of the integral equation, and the dashed line
denotes the solution of the crack bridging model using the presently derived spring constant.
As expected, the crack bridging model gives the same results as the present method in the
limiting condition of § - 0 or 7' /k;' — 0, i.e. the shear transfer length is far smaller than
the characteristic crack length (k{ '). The ratio between the shear transfer length and the
characteristic crack length is, according to eqn (82),
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Fig. 7. Comparison between present method and crack bridging model for various patch geometries.
Symbols : exact solution of the integral equation ; dashed curve : solution of crack bridging model.
Solid curves: eqn (95).

B _ s 1)
k' (1=v)(1+S5)

for mode I and, noting eqn (65),

AT S

kil 2(1+v)(1+95) &2

for mode II. The two extreme cases are (1) a cracked plate reinforced by a patch with a
stiffness far less than plate, i.e., S — 0 leading to f~'/k;' — 0. (ii) The reinforcement is
absolutely rigid. § — oo, leading to ' /k;' — 1/(1 —v?). As evidenced in Fig. 7, the repair
efficiency is highest for the former case and lowest for the latter, although the two cases
converge in the long crack limit. Strictly speaking the crack bridging method (Rose, 1987)
is accurate only for the special case of B~'/k;' — 0(S — 0), i.e., the elastic stiffness of the
cracked plate is far greater than that of the reinforcement. For other cases, the crack
bridging model over-predicts the reinforcement efficiency, hence tends to be somewhat non-
conservative.

Based on the crack bridging model, Rose (1987) constructed an interpolating equation
(corresponds to the limiting case ' /k; ' —0), as depicted in Fig. 7,

K, = 0y\/naF(k.a), (93)

where
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Fi(x) = \/ Lhpx (94)
I+ (p+8/m)x+pnx’

where for a fully bridged crack, p = (24,n*~48)/(8n—=") and A, = 1.768. This formula is
shown in Fig. 7. In practical applications of crack patching, the most common practice is
to design a patch so that S = 1.0 (Baker and Jones, 1988). For this case, the following
interpolating equation appears to provide a better correlation with the numerical results
shown in Fig. 7,

95)

tanh(nx/(1+ Brx)) ]'*

Fi(x) = |: s

X

where constant B has been determined by curve fitting the numerical solution of the integral
equation, which gives B = 0.1 for S — o0 and B = 0.3 for § = 1.0.

9. DISCUSSION AND CONCLUSIONS

Now that we have established the influences of the shear transfer length (8~' for mode
[ and A~ for mode II) and the characteristic crack length (k') on the efficiency of crack
patching, the effect of the third parameter, the Poisson’s ratio, can be readily evaluated.
For simplicity sake we will consider only the case of mode I with a stiffness ratio § = 1.0.
The reductions in stress intensity factor for three different Poisson’s ratios are plotted in
Fig. 8. The results obtained from the integral equation cannot be distinguished from these
curves on the scale of Fig. 8, thus it is not unreasonable to conclude that the effect of
Poisson’s ratio is fully captured by the spring constant, which varies with the Poisson’s
ratio according to eqns (65) and (82). Similarly, when the crack lengths are normalised by
the respective spring constants, there is no discernible difference between the mode I and

0.75

K/, (na)1/2

Reduction in stress intensity factor

0.50F
[ Mode I (S=1.0)
(o) v=0.0
) v=0.3
+ v=0.5
0.25 e r s o U A ) r A VIR ST B U W |
0.01 0.1 1

Crack Length ka

Fig. 8. Influence of Poisson’s ratio on the stress intensity factor after patching. Symbols: exact
solutions of the integral equation {mode I) ; solid curve : eqn (95).
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Fig. 9. Comparison between mode I and mode 11 stress intensity factors. Symbols: exact solution
of the integral equation (mode 1 and mode 1I) ; solid curve : eqn (95) with B = 0.1. Dashed curve:
eqn (94).

mode II stress intensity factors, as shown in Fig. 9. These results reveal that, for a given
stiffness ratio, the repair efficiency can be completely characterised by two scaling par-
ameters : shear transfer length and spring constant, both of which depend on loading mode
and the Poisson’s ratio.

The crack bridging model of reinforcement by distributed springs has been extensively
used in a number of contexts ranging from crack patching to composite fracture. The
present results revealed that, however, there is a significant limitation of the crack bridging
model in capturing the asymptotic behaviour in the short crack limit, especially in the
context of crack patching. In idealising the reinforcement as springs distributed over the
crack faces, the load transfer from the cracked plate to the reinforcement has effectively
been assumed to occur over zero distance, whereas in reality this transfer occurs over a
finite region surrounding the crack. As shown in Fig. 9, this simplification would result in
a non-conservative estimate of the repair efficiency. By the same token, the existing models
for analysing fibre bridging of cracks in composites (Marshall, Cox, and Evans, 1985;
Nemat-Nasser and Hori, 1987 ; Budiansky and Amazigo, 1989 ; Cox and Rose, 1994) may
also lead to non-conservative predictions, and hence need to be modified to accommodate
the gradual stress transfer between the matrix and the fibres arising from fibre pull-out.

To summarise, the following conclusions can be drawn from the present work :

1. An analytical solution has been obtained for the stress intensity factor of a crack
under mode II after being repaired by a bonded reinforcement.

2. The mode II stress intensity factor asymptotes to a limiting value as the crack length
increases to infinity; a closed-form solution has been obtained for this asymptotic
value.

3. In the case of an isotropic plate reinforced by an isotropic patch, the asymptotic value
of the mode II stress intensity is considerably higher than that in mode I, for the same
nominal applied stress.
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4. The asymptotic stress intensity factor for mode Il cracks depend strongly on the shear
moduli of the crack plate and the reinforcement.

5. Anisotropic reinforcements with low shear moduli are not suitable for repairing cracks
which are subjected to shear loading, although they may be most efficient in reducing
the stress intensity factor under mode I loading.

6. Two important scaling parameters have been identified which characterise the stress
intensity factor of a patched crack under mode I and mode II loading.
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APPENDIX A: STRESS DISTRIBUTION IN THE REINFORCED REGION

Determination of the stress distribution in a reinforced region involves two stages: the stress concentration
caused by the increased stiffness of the reinforced region, and the stress sharing between the plate and the patch.
These two aspects are frequently coupled, giving rise to a rather complex stress analysis problem with irregular
boundaries. Solutions of the stresses in a reinforced region are available only for certain simple shapes and load
distributions. For instance, in the case of uniform biaxial tension at infinity, Rose (1981) presented an analytical
treatment for an elliptical reinforcement, which involved solving two simultaneous linear equations.

However, in the case when the stress concentration can be ignored, a simple solution of the stress distribution
in a reinforced plate that is subjected to uniform biaxial stresses at infinity can be readily determined. For the
geometry shown in Fig. I,

o _ "
O =0l 0, =0, Ty =14 (A1)

It is assumed that both the base plate and the reinforcement are isotropic and homogeneous, and the bond allows
no relative displacement between the plate and the reinforcement, i.e. the strains in the base plate are equal to the
strains in the reinforcement,
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ey = £y, (A2)

where and in the following superscripts P and R denote the quantities pertaining to the base plate and the
reinforcement, respectively. The subscripts « and § range over x and y.
According to Hooke’s law for plane stress condition,

E
TR = TR (e Ve, (A3a)
1— v;;.R
E
o = T (e, vpren), (A3b)
1—vis
Eox

PR __ _ Ay
Ty = I vpg) ™ (A3c)

Now suppose that stresses in the plate and the reinforcement are uniform, the equations of equilibrium may be
written as follows, ignoring stress concentration due to reinforcement,

ot e+ oy = alite, {Ada)
Ohtp+ 0N In = olitp, {Adb)
o+t = 1t (Adc)

From equations {A3) and (A4), the strains can be readily solved,

Ept Ext Eptpvp  Eptgy
_ <g N ,.J.L)_Ump (_Pz_l’ + L‘”ﬁ)
1—v3  1—v} ’ 1—v3 1—vi
£ = z £ £ — (A5a)
Ept Extg | [Eeteve  Egtav
[;";+_~ujl A[_*_’_P,jJr_RuJ
-y 1-vi - I —vi
Eptpvp  Eptypv Ept, Ext
. (JL,.‘,_E N L&‘_&)_U;‘ e (_L': + _‘”&>
- 1 - 1%
= : - L (ASb)
Eptpve  Eptgve |° [ Ept Extg T
[J,L;E +)R5?R} ‘[,u: +¢§]
I—vi 1—vi 1—vg  1—vwx
-, S— AS
= Thty | el (A5c)
2(1+vp) | 2(L+vR)

The stresses in either the plate or the reinforcement are given by eqns (A3). In particular, one special case of
importance here is that the plate and the reinforcement have the same Poisson’s ratio (i.e. vp = vg = v). The

solutions in this case can be considerably simplified,

. (o, —va)le
T Eptp+Epty

(a7, —vai)ie

£, = ,
Y Eptp+ Erlg

20+t

T T e+ Eoty

Consequently,

where §' = Epty/Eptp denotes the stiffness ratio.

(A62)

(A6b)

(A6c)

(AT7a)

(A7Db)

(A7c)
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APPENDIX B: EXPRESSIONS FOR MODE 1
The following equations represent the mode I analogous of the results given by eqns (36), (42), (43) and (44)

for mode II.

Qe+ 4L

F() = REROYN: (B1)
Li(t,r) = J lr(F.(é)—c’)Ju(ét)Jn(ér)dé, (B2)
[
@ S “ _ oot
"N+ T8’ Li(t, n®(ydr = — T (B3)

K= — (1 4+ /7 0@ (B4)
Ja



